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In this work, we used a modeling procedure (Beyea et al. 2005) that builds on a variety of 

traffic-related parameters, including tailpipe emissions and vehicle counts, for which substantial 

data resources exist over a long time period.  The study area and surrounding traffic network are 

shown in Figure 1 of the main paper.  We chose to model airborne exposure of PAH because 

studies to date have indicated that environmental exposure to airborne PAH can have a larger 

effect on blood PAH adduct levels than industrial exposure, food or smoking (Eder 1999).    

Within the category of PAH air exposure, we focused on traffic emissions because they 

are a major source of both indoor and outdoor exposures to PAH, and often the largest source in 

areas near cities, as has been confirmed in a number of experimental studies ((Dubowsky et al. 

1999), (Lim et al. 1999), (Harkov et al. 1984), (Dickhut et al. 2000)), (Dunbar et al. 2001) (Dunbar 

et al. 2001), (Levy et al. 2001).  Traffic-related Benzo(a)pyrene (BaP) and other 4- to 6-ringed 

PAH compounds are found predominantly on sub-micron particles (Zielinska) that penetrate deep 

into the lung.  An earlier case-control study of breast cancer on Long Island reported an elevated 

(but not statistically significant) odds ratio for breast cancer in areas of high traffic density (Lewis-

Michl et al. 1996).   

PAH vehicle emissions are known to vary based on acceleration/deceleration conditions 

and the engine temperature (Maricq et al. 1999), (Ahlvik et al. 1997), (Williams and Swarin 1979), 

(Begeman and Colucci 1970).  Since acceleration/deceleration are more likely to occur at 

intersections, emissions should show spatial dependencies along the road network.  Cold-engine 

emissions should also show spatial dependencies, because cold starts are more likely to occur in 

the morning and initiate from residential population centers.  As a result, Individual exposures 
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generated by the model, using default parameters obtained from the literature (Beyea et al. 

2005), (Beyea, J., Hatch, M., et al., submitted), showed strong variation with spatial location 

(especially near traffic intersections). 

Our estimates of historical exposure complement short-term PAH biomarker 

measurements carried out in the same population using PAH-DNA adducts, which are indicative 

of recent DNA damage (Santella 1999).  Geographic modeling allows us to explore PAH 

exposure in the more distant past, which could be important for breast carcinogenesis.  Our 

estimates also complement markers of PAH exposure derived from questionnaire data on diet 

and smoking history (http://epi.grants.cancer.gov/LIBCSP/projects/Questionnaire.html).  

Although historical exposure models can generate individualized estimates of high 

specificity, the accuracy of the predictions may be uncertain because of reliance in some parts of 

the model on parameters that are known imprecisely or only by inference.  Consequently, we 

checked our model predictions against field data (model validation), followed by optimization of 

parameters to improve agreement with field data (model calibration).  Model validation was 

integrated into the original study design.  As discussed in the main paper, as part of the LIBCSP 

study interview, interviewers collected samples from residential soils (Gammon et al. 2002a) for 

use in model validation and calibration.  Data not specifically collected for model validation were 

also available for use in validation exercises, namely PAH-DNA adduct blood measurements 

(Gammon et al. 2002b) and PAH concentrations in extracts of residues from residential carpet 

dust (Gammon et al. 2002a).   All validation and calibration efforts made use of the full set of data 

collected for both cases and controls, but with the removal of any distinguishing information on 

case/control status.   

 One of our goals with calibration was to quantify the extent to which emissions increase 

at intersections.  Intersections are known, at least qualitatively, to be emission hot spots (Sheu et 

al. 1996a; Sheu et al. 1996b), (Sculley 1989), a spatial effect that is sometimes ignored in 

epidemiologic studies of traffic-related illness, namely those that take their exposure marker as 

proportional to traffic counts and/or distance to nearest major road (Brunekreef et al. 1997), 

(Waldron et al. 1995), (Savitz and Feingold 1989).  
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Data transformation. 

The geographic model predictions for soil, dust, and adducts are linearly related to the 

emission terms, e.g., intersection emissions and cruise emissions, which would allow the use of 

multilinear (multiple) regression to obtain the optimized emission parameters, were it not for the 

fact that the distribution of the data and model predictions for individuals are log-normally 

distributed.  Once the data and model predictions were log-transformed, non-linear regression 

was required.  In addition, model parameters such as deposition velocity, washout rate, and 

photodecay rates all enter the model in a non-linear fashion.  Covariates, such as BaP food index 

assessed from responses to a food frequency questionnaire and the number of smoked and 

grilled foods eaten in the most recent decade of life, were also transformed to bring them to 

normal form. 

 

Soil data. 

Soil samples were collected by the study interviewer in 1996-1997 to 2-cm depth via 

augur from the yards of randomly chosen female subjects who had lived at their current residence 

for at least 15 years (Gammon et al. 2002a).  

 The average residence time for the subjects from whom soil samples were collected was 

27 years in comparison to 18 ½ years for the entire study population.  Four soil samples were 

taken at each residence: in the center of the front and rear yards and at foundation locations by 

the front and rear doors. 16 PAH species including Benzo(a)Pyrene (BaP) were assayed via high-

resolution GC-MS of composite samples from each residence.  A subset of samples was 

analyzed before aggregation to determine within-yard variation (GSD = 3.0).   Failure to collect 

soil was usually due to lack of a yard rather than weather conditions.  Subjects were selected for 

use in our validation exercises, if they had measurements at all 4 locations at their residence 

(N=654) and they had provided sufficient address information to allow accurate geocoding to the 

street level (n = 588).   
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The GSD of BaP in soil, after adjustment for model deposition patterns, was 4.6, which is 

a measure of the between-yard variance.  As mentioned above, the within-yard GSD was 3.0.  

Subtracting out the within-yard GSD contribution assuming lognormal distributions leaves an 

unexplained error term with a GSD of 2.7.  Potential contributors to this residual variance include 

soil type, lawn care, landscaping, and building geometry.  Limitations of the model could also play 

a role.   

Two corrections were made to the soil data points to standardize them.  The first 

accounted for a drift in calibration that was found prior to replacement of a gas chromatograph.  

The second correction to the soil data accounted for decay of PAH with time during freezer 

storage.  Information was available to allow data for 500 residences to be standardized.  Analysis 

of the soil data showed that log soil variances were fixed regardless of soil level, so chi-square for 

the log soil data is proportional to the standard sum of squares of differences between model and 

data. 

  Correlations of other PAHs with BaP in soil were quite high for the high-ringed 

compounds.  For instance the following PAH/BaP Pearson correlations had r-values above 0.9: 

benzo(b)fluoranthene, benzo(k)flouranthene, indeno(1,2,3-cd)pyrene, benzo(ghi)perylene, and 

dibenz(a,h)anthracene.  Acenaphthylene, fluorine, anthracene, chrysene, and benz(a)anthracene 

had correlation coefficients with BaP above 0.8.  The remaining five light PAHs had r-values 

above 0.6 (naphthalene, acenaphthene, phenanthrene, fluoranthene, and pyrene).  The poorer 

correlation for the low-ringed PAHs is not unexpected.  They tend to revolatilize from surfaces 

(Dimashki et al. 2001), a phenomenon that we did not model.  Also, they tend to be associated 

more with diesel emissions than with passenger vehicles, which we did not model in detail either 

(Marr et al. 1999), (Wingfors et al. 2001). 

Fits of the soil-optimized model to soil BaP values at individual residences are shown in 

S-1.  Even with the default model, before optimization, the confidence limits on the slope of 

regression line were very narrow and the p-values very small (< 10-4), which allowed us to use the 

soil data for calibration.  The R2-value of the fit in the figure is 8%. (It was 3% before 

optimization.).  A small R2 indicates large variance, but by itself, is not a measure of the 
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correctness of a model (Rothman and Greenland 1998).  In our case, the residuals are well 

behaved, meeting tests for normality and constant variance across the range of model 

predictions.  Most importantly, the mean of the residuals do not differ significantly from zero as 

the model prediction changes. 

 As shown in the main paper, when we aggregated the data into 20-quantiles, no 

deviation from linearity was apparent and the R2-value increased to 86%.  Large residual 

variance in soil concentrations at the individual residence level is unavoidable, due to such 

factors as the convoluted paths material takes through the soil (Bundt et al. 2000), (Aeby et al. 

2001), differences in soil type, the variation in lawn care and mowing, and the modifications of 

wind fields caused by different densities and shapes of buildings and surrounding trees 

(Thompson 1993).  As long as there is no significant bias in these measurement errors, the soil 

data can be used for calibration.  The well-behaved, linear fit to the quantile data across the full 

range of soil values suggests that there is no bias issue with the soil data.  

 

PAH DNA-Adducts. 

608 women had both detectable adduct levels and sufficient address information to allow 

accurate geocoding to the street level.  The comparable number of non-detects was 248.  To be 

sure that women lived at a location long enough for PAH-adducts to have reached equilibrium, we 

excluded women from our validation efforts who had lived at their current address for less than 2 

full years.  This reduced the number of detects to 506 and the number of non-detects to 203.  An 

additional 21 detects were excluded because their addresses included an apartment number, 

indicating a possible significant discrepancy between an individual residence’s true location and 

the centralized location of the apartment complex that defined the geocoded latitude and 

longitude, either vertically or horizontally.  Exclusion of these subjects for the DNA-adduct 

comparisons, either for short duration of residence or apartment dwelling, made no difference to 

any conclusion reported here.   

Table S-1 shows how the number of detects and non-detects for PAH-DNA adducts 

varies with 16-km zone along the length of Long Island.  The proportion of non-detects to detects 
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does not differ significantly by zone (p= 0.23).  Variances of log adduct data were taken as 

constant, based on Dickey (Dickey et al. 1997).  Thus chi-square for the log soil adduct is 

proportional to the standard sum of squares of differences between model and data.  The fit of 

the adduct-optimized model to the individualized adduct data is shown in Figure S-2.   

 
 
 
Dust samples. 
 

Dust was obtained from a random sample of homes of women, who had resided for 15 

years or more at their current address (n = 320 cases and 356 controls) (Gammon et al. 2002a).  

Carpet dust was collected by the HVS3 vacuum from a surface area greater than 2.2 m2 in a 

room occupied frequently in the year before enrollment in the study.  Up to 2 g of sieved (<150 

um) dust was extracted in 6% diethyl ether/ 94% n-hexane, cleaned with florisil, and analyzed by 

GC/MS selected ion monitoring.  556 women with dust samples provided sufficient address 

information to allow accurate geocoding to the street level.  Two women had missing data and 

another 26 were excluded from analysis because their addresses included an apartment number, 

which implied a possible mismatch between true and geocoded location, vertically or horizontally. 

As shown in Table S-2 and Figure S-3, the trend in carpet BaP/m2 rises and then falls as 

one moves along 16-km zones on Long Island that mark out decreasing levels of urbanization, 

indicating that some source of PAH other than outside air is dominating BaP in carpets.  The 

peak is not due to increased amounts of  dust vacuumed from carpets.  That quantity declines 

steadily (Table S-3).  Therefore, the peak in BaP/m2 is largely due to increased BaP per gram.   

The spatial pattern for BaP by zone is both puzzling and interesting.  Since ambient PAH 

has been found to account for 50% of indoor airborne PAH in a number of studies (Dubowsky et 

al. 1999; Sheldon et al. 1992; Sheldon et al. 1993), it is hard to see how PAH from cooking could 

produce a 3-fold increase in dust PAH from zones 1 to 3.  As discussed in the main text, track-in 

of dust is another possible spatial confounder.  There is only one study of which we are aware 

that has looked at dust track-in (Chuang et al. 1995) and that was a pilot study in Columbus, OH 

of 8 homes.  PAH concentrations were found to be higher in entryway dust than house dust in 

every house studied.  The concentrations were also highly correlated (Chuang et al. 1995), with a 
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correlation coefficient of 92%.  The source of entryway (door mat) PAH is not known.  Possibly, it 

came from street dust, which is rich in traffic PAH, or from automotive deposits in driveways or in 

attached garages.  If so, the relationship between traffic PAH and house dust could be very 

complex, involving pathways that may vary from house to house and lifestyle to lifestyle. 

 

Correlation between aggregated environmental data. 

Correlations among the adduct, dust, and soil PAH measurements presented in Table 1 

of the main paper were computed.  The results are shown in Table S-4.  Note that the individual 

environmental samples for adducts, dust, and soil were not necessarily collected in the same 

homes.  Soil and dust samples had the greatest percentage of matching residences.  

 

Carbon Monoxide data.  

 In general, hourly patterns of PAH and CO air concentrations are similar indoors and out 

(Lim et al. 1999), with r2 coefficients ranging from  0.5 to 0.8 (Ekberg 1995; Johnson et al. 2004; 

Lodovici et al. 2003; Menichini et al. 1999).  Figures S-4 and S-5 show the results of the 

multilinear fits to the CO data before and after optimization of the scale factor for intersections 

and distant sources (background term).  Before optimization, the model fails to match the flat 

afternoon peak.  Note that the background term has an hourly dependence.  No intercept 

constant was allowed in the multilinear regressions.  The scale factors are relative to the default 

model.  For distant souces the CO-derived value was 5, which is identical to the factor derived 

from fits to soil data.  The CO-derived, scale factor for intersection emissions differed by a factor 

of 2 from the value derived from the soil data.  Because CO and PAHs are different pollutants, it 

would not be expected that their model parameters would necessarily agree.  Nevertheless, the 

increased importance of emissions at intersections over the default CO-model lends additional 

support to the idea that intersections must be accounted for in epidemiologic analysis of traffic 

pollution to fully characterize the spatial distribution of exposures. 

We analyzed, but did not make use of, U.S. EPA data for second CO monitor on Long 

Island, namely data collected for 18 months in 1973-74 at the East Farmingdale Water District in 
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Suffolk County (Finfer, EZ 1998, personal communication).  Whereas traffic counts and other site 

variables are complete for the Nassau County monitoring location, we lack counts along two of 

the bordering roads for the Suffolk site.  Presumably, the actual counts along these minor roads 

were low, but their absence means we lack intersection data at the corners of the four streets that 

surround the site.  More problematic is our lack of knowledge of the actual location of the Suffolk 

monitor.  The monitor no longer exists and two separate latitude and longitude values appear in 

USEPA documentation for it.   In our preliminary comparisons, we chose to use the coordinates 

that brought the monitor closest to the location of the water district that corresponds to where staff 

say existing monitors of other pollutants are now located. 

The fit to the CO data from the Suffolk County monitor (not shown) is not as good as the 

fit to the Nassau data, with the model prediction showing an early evening peak that is too strong 

and a morning peak that is too weak.  However, we do not take the discrepancy as indicative of a 

need to refine the model, because of the missing intersection traffic counts and the ambiguity in 

monitor location. 

 

Geocoding.  

Only 10% of work addresses given at interview would fully geocode to the street level, 

although almost all were determinable at the city or town level.  Therefore, we prepared a work 

exposure index imputed for each town or city for each month from 1960 to 1997.  For this 

purpose, hypothetical workplaces were assigned along the major roads in the town or city in 

which a woman worked.  Exposure indexes were computed for each hypothetical location in a 

town or city and averaged.  Such an index serves at least to differentiate exposures in the more 

urbanized towns from the more rural villages on Long Island.  Inclusion of work exposures 

imputed to the town or city level of the workplace worsened the fits to the adduct data.  As a 

result, imputation was abandoned and all exposures were taken as residential exposure 

opportunity. 

We chose two levels of accuracy for accepting geocoded addresses.  The first allowed 

extrapolation of address number from the start of a dead-end street.  For the more accurate level, 
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we excluded residences on dead-end streets, which allowed interpolation of address numbers 

between known values on either side of the geocoded location (two-sided interpolation).  No 

difference was found in the fits to soil data when one-sided or two-sided address interpolation 

was used, so one-sided interpolations were accepted, which allowed exposure estimates for 

more women to be computed. 

 

Background emissions 

Previous traffic models have used gasoline sales data to estimate background emissions 

or have used a constant value as a surrogate for the cumulative contribution of distant roads 

(Viras et al. 1987), (Raaschou-Nielsen et al. 2000).  We have attempted to directly account for 

traffic emissions on major roads within 80 km of our study area.  However, there are more distant 

roads, as well as other sources of PAH emissions; therefore, it was prudent to include a 

background term in our model, as well.  As stated in the main paper, we have tested two options 

for use in model calibration exercises.  In the first, a constant term is added to the model 

prediction.   For the second option, we allow background to be proportional to the exposure 

calculated from the more distant counties (all but Nassau, Suffolk, and Queens counties).  In both 

approaches, we used soil or adduct data to fix the value of the unknown scale factors.   

 

Optimized models. 

Uncertain parameters in the traffic exposure model, such as particle deposition velocity, 

relative vehicle emission rates at intersections, and relative emissions during cold-engine 

conditions, were optimized by computing values on a grid within parameter space and taking the 

parameter values that minimized the chi-square sum of squares.  Chi-square values changed 

slowly, indicating a well-behaved parameter space.  Results are given in Table 2 of the main 

paper.  In this supplement, we provide further details. 

For the adduct and dust models, we also controlled for possible confounding variables, 

such as the number of smoked and grilled foods eaten in the most recent decade of life.  To 

accomplish this, we performed a multilinear regression at each point in the model parameter 
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space.  Let G be the prediction of exposure at a particular point in model parameter space, and 

let C and D be covariates transformed to normal form.  To obtain a revised chi-square at each 

point we performed a multilinear regression to solve the following type of equation, using 

standard subroutines (Press et al. 1992) :  Ln(data) = a1*Ln(G) + a2*C + a3*D.  We then took the 

output chi-square of the computation and assigned it to the grid point for the particular model, G.  

Thus, in effect, we use the covariates to define a transformation on the original grid of chi-square 

values.  Since the chi-square transformations made only a small shift in the minima, we have 

retained the original parameter values in Table 1.  All the optimized parameters for the soil model 

appear to have reasonable values, but it is necessary to recognize that the values obtained may 

have been influenced by limitations of the model and study design.  For instance, although we 

have accurate geocoded locations along a street, geocoding computer programs assign a default 

value to distance from the street, not the actual value, because no such information is normally 

collected.  It is possible that the optimization routines favored intersection emissions more than is 

appropriate, because the angular geometry of exposures from intersections makes them less 

sensitive to the perpendicular distance to the street and therefore more accurate than our 

estimates of cruise emissions. 

In the soil model, intersections contributed 80% of the total emissions.  Because the 

fraction of the road network where enhanced intersection emissions exist is relatively small, the 

fact that 80% of total emissions come from these short stretches indicates that emissions per unit 

length at intersections are very high. 

Deposition velocity in the soil model was optimized at 0.007 m/s, ~ twice the default 

value.  Bootstrap calculations indicate, however, that there is a broad distribution for optimized 

deposition velocity.  Optimized rain washout and photo-decay rates were ½ and ¼ the default 

values, respectively.  However, it should be noted that deposition, washout, and photo-decay are 

all plume depletion processes, and the data are not sufficient to separate out their individual 

contributions very precisely. 

Fits of the adduct data to the warm-engine version of the model using default parameters 

produced p-values of the order of 0.02. However, the p-values dropped below 0.001, when we 
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shifted to the default, cold-engine version, indicating that the cold-engine version provides a 

better fit to the adduct data.  Therefore, the PAH-DNA-Adduct data was used for optimization of 

the cold-start model.   

The optimized parameters resulting from the adduct data put PAH depletion phenomena 

to zero, an unexpected result which may reflect compensation for model limitations, particularly 

the inability to capture study subject movement outside the residence.  Had we been able to 

account for time spent away from home, such as time spent at work, we would have effectively 

averaged the signal over a not-insignificant area, thereby increasing the relative contribution of 

sources some distance from the residence.   

Another parameter of interest for the cold-engine version of the model is the distance it 

takes for a vehicle to warm up, which is about 1-km according to the literature.  The optimized 

value turned out to be ½-km, i.e., half as much as the default value.  Although not an 

unreasonable travel length for warm-up to occur, this value should not necessarily be used in 

other studies that rely on other cold-engine models, without first considering the other length 

parameter optimized in the fit, namely the distance from intersections that emissions are elevated 

due to acceleration/deceleration effects.   This length increased to ½-km, which is rather a long 

stretch for elevated emissions.  Perhaps, these two length parameters have been jointly adjusted 

by the optimization algorithms to overcome simplifications in the cold-engine version of the 

model. 

As for choice of soil-optimized model vs. adduct-optimized model, there are arguments 

that can be made in favor of both versions.  The soil fits are cleaner, with tighter confidence 

intervals and larger R2 values.  Unlike the adduct-optimized model, the usefulness of the soil-

optimized model does not depend on the assumed connection between DNA-adducts and 

cancer. Soil data retain some degree of historical deposition record.  On the other hand, the 

adduct data implicitly account for movements inside and outside the residence.  Also, the adduct 

data are sampling PAH within the body, which means the data are more reflective of the actual 

particle sizes that pass through, or metabolize within, lung tissue, allowing PAH to reach blood 

(Gerde and Scott 2001).  In contrast, the soil PAH might include contributions from larger 
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particles, such as resuspended tire particles, that disperse differently than vehicle exhaust, 

possibly producing some degree of mismatch between the spatial pattern of particles reaching 

the deep lung and those depositing on soil. 
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Table S-1.  Comparison of the number of PAH-DNA adduct detects and non-detects by 

zone 

 
 

Zone Numbera
Adduct detects 
per zone 

Adduct non-
detects per zone 

1 136 62 
2 137 59 
3 88 39 
4 68 19 
5 30 9 
6 10 0 
7 8 2 
8 6 4 
9 2 1 

a) The difference in proportions is not statistically 
significant by the chi-square test (p = 0.23). 
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Table S-2.  Concentrations of PAH per gram of carpet dust and per square meter of carpet in 16-

km geographic zones running from the most urbanized to the most rural end of Long Island. 

 
 

Zone 
Numbera

 
 
Carpet 
BaP/m2 
(geometric 
mean, 
ng/m2) 

 
 
 
 
 
Std 
errorb 

 
 
Carpet 
BaP/m2 
(arithmetic 
mean, 
ng/m2) 

 
 
 
 
 
Std 
error  

 
 
 
Carpet BaP 
(geometric 
mean, 
ng/g) 

 
 
 
 
 
Std 
error  

 
 
Carpet 
BaP 
(arithmetic 
mean, 
ng/g) 

 
 
 
 
 
Std 
error  

 
 
Carpet 
data 
points 
per 
zonec

1 570 81 2600 590 1300 130 2700 340 151 
2 870 130 4100 1200 1800 170 3700 470 162 
3 1400 270 6500 2100 2500 440 9800 2500 98 
4 1560 350 5100 1100 2600 480 6800 1300 70 
5 980 420 3700 1200 1700 590 4100 950 28 
6 490 470 1400 440 630 340 1290 520 9 
7 1080 870 2400 1300 760 540 1400 690 6 
8 310 130 370 130 660 230 740 170 4 
9 NA NA NA NA NA NA NA NA 0 

a) 16-km zones measured from the Nassau County border eastward along the Long Island axis. 

b) Applies to upper bound of standard error range.  Lower bound is less. 

c) Data are only included for residences that could be geocoded to the street level. 
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Table S-3.  Concentrations of fine (< 150 μm) dust per square meter of carpet in 16-km 

geographic zones running from the most urbanized to the most rural end of Long Island. 

 
 

Zone 
Numbera

Carpet dust 
(geometric 
mean, g/m2) 

 
Geometric
std error 
(GSD)b

Carpet dust 
(arithmetic 
mean, g/m2) 

 
 
Std error  

Carpet 
data points 
per zonec

1 2.27 1.13 8.02 1.87 151 
2 2.06 1.13 7.14 1.26 162 
3 1.71 1.15 4.11 0.57 98 
4 1.65 1.19 5.31 1.53 70 
5 1.68 1.40 6.10 1.81 28 
6 1.30 2.09 7.55 4.39 9 
7 0.70 1.46 0.98 0.35 6 
8 2.11 1.36 2.42 0.72 4 
9 NA NA NA NA 0 

a) 16-km zones measured from the Nassau County border eastward along the 
Long Island axis. 

b) Multiply and divide the previous column by the GSD to get the standard error 
range. 

c) Data are only included for residences that could be geocoded to the street 
level. 
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Table S-4.  Pearson correlation coefficients between (aggregated) environmental data collected 

in zones along Long Island and shown in Table 1.  R2 values in parentheses. 

 
 PAH-DNA adducts Soil (ng/g) Dust (ng/m2) 
PAH-DNA adducts 1 0.77 (0.59)a 0.36 (0.13)b

Soil (ng/g) 0.77 (0.59)a 1 0.43 (0.18) 
Dust (ng/m2) 0.36 (0.13)b 0.43 (0.18)c 1 

a) 32% of samples collected at same residence 

b) 43% of samples collected at same residence 

c) 80% of samples collected at same residence 
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Figures: 

 

Figure S-1. Soil PAH vs. model prediction. N= 500. 

 

Figure S-2. PAH-DNA adduct level vs. prediction of cold start model. N = 608. 

 

Figure S-3.  Carpet PAH vs. distance away from the most urbanized regions of Long Island.  

Geometric means by 16-km zones 

 
Figure S-4.  Fit to CO data before optimization. 
 
 
Figure S-5.  Fit to CO data after optimization of intersection and background scale factors.
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Figure S-1. Soil PAH vs. model prediction. N= 500. 
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Figure S-2. PAH-DNA adduct level vs. prediction of cold start model. N = 485. 
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Figure S-3.  Carpet PAH vs. distance away from the most urbanized regions of Long Island.  

Geometric means by 16-km zones.    
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 Figures S-4 and S-5.  

Fit to CO data before optimization, R2 = 0.52
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     Fit to CO data after optimization of intersection 

& background scale factors, r2 = 0.63.
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